Linear Algebra II

01/03/2021, Monday, 18:30-20:30
$1 \quad(5+10+10=25 \mathrm{pts})$
Least squares approximation

For a given matrix $A \in \mathbb{R}^{m \times n}$ with with rank n, let $A=Q R$ be a QR-decomposition.
(a) Prove that $A^{\top} A$ is nonsingular and that $\left(A^{\top} A\right)^{-1}=R^{-1}\left(R^{-1}\right)^{\top}$.

Now consider the matrix

$$
A:=\left[\begin{array}{rr}
1 & 1 \\
-1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

(b) Determine a QR-decomposition of A.
(c) Consider the linear equation

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Determine the least squares solution to this equation.
$2(6+6+5+8=25$ pts $)$

Consider the real vector space $C[0,1]$ of continuous functions on $[0,1]$
(a) For $f, g \in C[0,1]$, define $\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x+2 f(0) g(0)+f(1) g(1)$. Prove that this defines an inner product on $C[0,1]$.

Let S be the subspace spanned by the functions $f(x)=1$ and $g(x)=x$.
(b) Compute $\|f\|$ and $\|g\|$.
(c) Let θ be the angle between f and g. Compute $\cos \theta$.
(d) Find an orthonormal basis of S.

Let A be a the matrix given by

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(a) Determine the characteristic polynomial of A.
(b) Determine the eigenvalues of A.
(c) Determine corresponding eigenvectors.
(d) Is A diagonalizable? Explain your answer.
$4(5+5+5+5=20 \mathrm{pts})$

Diagonalization

Let $A \in \mathbb{C}^{n \times n}$ be a unitary matrix.
(a) Prove that every eigenvalue λ of A lies on the unit circle, i.e. $|\lambda|=1$.
(b) Prove that if a complex number λ satisfies $|\lambda|=1$, then $\bar{\lambda}=\frac{1}{\lambda}$.
(c) Show that eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
(d) Is A is unitarily diagonalizable? Explain your answer.

